$$
\begin{gathered}
M M P \text { Learning Seminar } \\
\text { Week } 96 \\
\text { Contents: } \\
-\log \text { discrepancies. } \\
\text { - exceptional singularities. }
\end{gathered}
$$

Log discrepancies:
$(X, \Delta) \log$ pair. $\quad \Delta \geqslant 0, \quad K x+\Delta$ is Q - Cartier

$$
\underset{\text { Ul }}{Y} \underset{\varphi}{ } X \text { prog bir }
$$

E
pome divisor.

$$
\varphi^{*}\left(K_{x}+\Delta\right)=K_{r}+\Delta r .
$$

The \log discrepancy of (X, Δ) at E is $1-\operatorname{coeff}_{E}\left(\Delta_{r}\right)$.

Minimal log discrepancy: $(X, \Delta i x)=$ point on X.

$$
m \mid d(X, \Delta i x)=\inf \left\{a_{E}(X, \Delta) \mid c_{X}(E)=x\right\}
$$

Example: $\quad \operatorname{mld}\left(\left.A\right|^{n} ;\{0\}\right)=n$.

$$
\operatorname{mid}\left(C_{n} ;\{0\}\right)=\frac{2}{n} \text {. }
$$

Cone over a rational curve of degree n
minimizing a function on a "lattice".

Remark: Minimal log discrepancies are harder to compute than \log canonical thresholds. \longrightarrow minimizing a function on a convex set.

Conjecture (ACC): The set of n-dimensional minimal log discrepancies satisfies the ACC.

Conjecture (LSC): The minimal log discrepancy function is bower semicontinuous on the closed point x.

Known cases: LSC: up to dimension 3.

- LCI (deFernex-Ein-Muslătz)
- Quotient sing (Nakamura).

Tonic singularity:

$$
X_{n}=\left\{x y+z^{n}=0\right\}
$$

$$
x+y=n z
$$

minimal res.
minimal res
of A_{n} sing.

Theorem: The log discrepancy function of $X(\sigma)$ correspond to the unique linear function L_{σ} on σ^{v} that value. 1 on $\underbrace{\sigma^{2}(1)}$

$$
\sigma^{v} \subseteq Q^{2}
$$

lattree ray gen

$$
\varepsilon-l_{c}
$$

semgroup stature

Theorem (Lawrence, 90's): Let $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}_{1}^{d}$.
$U \subseteq \mathbb{T}^{d}$ open set. The set of subgroups of \mathbb{T}^{d} which to not intersect U has only finitely many maximal elements wit inclusion

Remark: A terminal 3 -fold singularity $\left(X_{i x}\right)$ of index r admits $r-1$ blow-ups extracting divisors with \log discrepancy $1+\frac{\alpha}{r}$ where $\alpha \in\{1, \ldots, r-1\}$

Q: What happens in the case of terminal toric 3 -fold sing?
$X_{r} \longleftarrow$ terminal tone 3-fold of index r ξ associated cone

$$
L \subseteq \mathbb{T}^{3}
$$ ξ

associated semiproup in \mathbb{R}_{200}^{3} associated group in $\mathrm{TH}^{1^{3}}$.

Xe corresponds to
All points with \log diser $=1$.

Surface kill singularities: classified by Alexeer.
A-type:

$n_{i} \geq 2 . \quad$ tonic surface singularity.

D -type:

$$
n_{i} \geq 2 \quad \text { admit } 2: 1
$$ cover miking

E-type:

Quotient singularities:
Theorem (Jordan, 1890's): Let (X ix $)$ be a n-dimensional quotient singularity. There exists a n-dimensional tonic singularity (Tit) and a finite Galois morphism $\begin{aligned} T & \longrightarrow X \\ t & \longmapsto x .\end{aligned}$
of degree at most $c(n)$.
Remark: If n is large enough, then we can take $(c n)=n$!

$$
n \geqslant 71 .
$$

Regularity of kill singularities:
$(X, I ; x)$ is a log canonical sing. We define its regularity to be

$$
\operatorname{rg}(X, I ; x)=\operatorname{dim}\left\{D\left(Y, I_{r}\right) \mid\left(Y, F_{r}\right) \longrightarrow(X, I) \text { dllmax }\right\}
$$

$(X, \Delta i x)$ kit pair. We define its regularity to be.

$$
\begin{aligned}
& \operatorname{rgg}(X, \Delta i x)=\max \{\operatorname{reg}(X, \Gamma ; x) \mid(X, \Gamma ; x) \text { is } k \& \Gamma \geqslant \Delta\} \text {. } \\
& \left.\left.\begin{array}{l}
A-t_{\text {type }} \\
D-t_{\text {pe }}
\end{array}\right\} \quad \text { reg }=1 \quad E-t_{\text {the }}\right\} \text { reg }=0 \quad \text { ar } \\
& \longrightarrow \text { dihedral. }
\end{aligned}
$$

Example: Toric singularities have regularity $=\operatorname{dim} X-1$.
Example: There are quotient sing of reg $=0$.
Definition: A singularity is said to be exceptional if

$$
r e g=0 \text {. }
$$

For instance, $E_{0}, E_{7} \& E_{8}$ are exceptional sing.

Exceptional singularities:
Proposition: A two dimensional quotient singularity $X=\mathbb{C}_{1}^{2} / G$. by 2 finite group G without reflection, is exceptional if and only i. G has no semi-invariants of degree ≤ 2.
(same really holds in dimension 3 with scmi-invarimbly of dore (3).
Remark: 4-dimensional \& 5 -dimensional quotient exceptional sag have been classified by Prokhony and shramax.
Remain: LeI $X \subseteq \mathbb{G}^{4}$ be a hypersurface canonical singularly given by the equation:

$$
x_{1}^{a_{1}}+\cdots+x_{4}^{a_{4}}=0 .
$$

Prookhorov \& Ishir classified all the weights $\left(a_{1}, \ldots, a_{4}\right)$ for which 1 his is an exceptional sing.
Theorem (Han-Liv-M, 2019): If we fix $n^{\varepsilon} \& \varepsilon \geqslant 0$
The sot of n-dim $\varepsilon-l_{c}$ exceptional singulanties are bounded op to deformation.

Theorem (M, 2018): The ACC for mils holds for exception nl sing.

Proof: $\quad\left(X_{i x}\right) n$-dim, exceptional \& $\varepsilon-l_{c}$. $(\varepsilon>0)$.
By boundedness of complements (Birkar)., we can find a $l_{c} N$-complement $\left(X, I_{i} x\right)$ is l_{c}

$$
N\left(K_{x}+\Gamma\right) \sim 0 \text { around } x
$$

Let $Y \supseteq E$ be the unique \log canonical place.
X^{\prime} is the index one cover of $K^{\prime} x$.

$\varepsilon-l_{c}, n$-dim, exc.
obtained by adj to E

$E^{\prime} E^{\prime}$ are $\frac{1}{N}-l_{C}$ and $F_{\text {and }}$
In particular, the degree of $E^{\prime} \rightarrow E$ is bounded above.

We can find $C \subseteq E^{\prime}$ lying on the smooth loci for which $C \cdot \Gamma_{E^{\prime}} \leqslant k$

$$
\begin{aligned}
& K \cdot y^{\prime}+\Gamma_{y^{\prime}}+E^{\prime} \sim Q_{Q, x^{\prime}} 0 \text {. pull-b2x of } K x^{\prime}+\Gamma^{\prime} \\
& K y^{\prime}+\left(1-a_{E^{\prime}}\left(X^{\prime}\right)\right) E^{\prime} \sim a_{1} x^{\prime} \quad 0 \text { poll } b_{20} \text { of } K_{x^{\prime}} \text { : } \\
& \alpha_{E^{\prime}}\left(X^{\prime}\right) E^{\prime}+\Gamma_{Y^{\prime}} \sim_{Q, X^{\prime}} 0 \text {. } / \text { product } C \text {. } \\
& \leq k \\
& \alpha_{E^{\prime}}\left(X^{\prime}\right)(-m)+\left(\Sigma_{Y^{\prime} C} C\right)=0 \\
& a_{E^{\prime}}\left(X^{\prime}\right) \leqslant \frac{k}{m} \text { is bounded above. } \\
& \frac{k}{m} \geqslant \alpha_{E^{\prime}}\left(X^{\prime}\right)=(\text { ramification at } E) \alpha_{E}(X) \\
& \stackrel{V}{\varepsilon} \\
& \text { yemen - Huruity. } \\
& a_{E}(X) \leqslant k / m \quad m \|\left(X_{i x}\right) \leq k
\end{aligned}
$$

$$
\begin{array}{r}
\frac{k}{m} \geqslant a_{E^{\prime}}\left(X^{\prime}\right)=\left(\begin{array}{r}
\text { ramification at } E
\end{array}\right) a_{E}(X) \\
V \\
\varepsilon
\end{array}
$$

ramification index $\leqq \frac{k}{\varepsilon m} r$ bounded above in terms of the dim

$$
\left.\begin{array}{rl}
\text { Degree }\left(Y^{\prime} \longrightarrow Y\right)= & \operatorname{Degree~}^{\text {cor }}\left(E^{\prime} \longrightarrow E\right) \times \\
& \text { ramification index at } E
\end{array}\right\} \begin{aligned}
& \text { bounded } \\
& \text { above. }
\end{aligned}
$$

index of k_{x}.
We conclude that the index of K_{x} is bounded above,

$$
\begin{aligned}
& i(k(x) 1 m \\
& \alpha_{E}(X) \in \mathbb{Z}_{1}\left[\frac{1}{l}\right] . \quad m / d\left(X_{i x}\right) \leqslant \frac{k}{m} \\
& m \| d\left(X_{i x}\right) \in \underbrace{[0}_{\underbrace{}_{\text {finite }}[0, k / m] \cap \mathbb{Z}_{1}\left[\frac{1}{l}\right]}
\end{aligned}
$$

